
Security Considerations for Remote
Electronic Voting over the Internet

Avi Rubin

AT&T Labs – Research

Florham Park, NJ
rubin@research.att.com

http://avirubin.com/

Abstract

This paper discusses the security considerations for remote electronic
voting in public elections. In particular, we examine the feasibility of
running national federal elections over the Internet. The focus of this
paper is on the limitations of the current deployed infrastructure in terms
of the security of the hosts and the Internet itself. We conclude that at
present, our infrastructure is inadequate for remote Internet voting.

1 Introduction
The right of individuals to vote for our government representatives is at the heart of the
democracy that we enjoy. Historically, great effort and care has been taken to ensure that
elections are conducted in a fair manner such that the candidate who should win the
election based on the vote count actually does. Of equal importance is that public
confidence in the election process remain strong. In the past changes to the election
process have proceeded deliberately and judiciously, often entailing lengthy debates over
even the minutest of details. These changes are approached so sensitively because a
discrepancy in the election system threatens the very principles that make our society
free, which in turn, affects every aspect of the way we live.

Times are changing. We now live in the Internet era, where decisions cannot be made
quickly enough, and there is a perception that anyone who does not jump on the
technology bandwagon is going to be left far behind. Businesses are moving online at
astonishing speed. The growth of online interaction and presence can be witnessed by the
exponential increase in the number of people with home computers and Internet access.
There is a prevailing sentiment that any organization that continues in the old ways is
obsolete. So, despite the natural inclination to treat our election process as the precious,
delicate and fragile process that it is, the question of using the new advances in
technology to improve our elections is natural.

The feasibility of remote electronic voting in public elections is currently being studied
by the National Science Foundation by request of the President of the United States (see
http://www.netvoting.org/). Remote electronic voting refers to an election process
whereby people can cast their votes over the Internet, most likely through a web browser,
from the comfort of their home, or possibly any other location where they can get Internet
access. There are many aspects of elections besides security that bring this type of voting
into question. The primary ones are

coercibility the danger that outside of a public polling place, a voter could be
coerced into voting for a particular candidate.

 vote selling the opportunity for voters to sell their vote.
vote solicitation the danger that outside of a public polling place, it is much more
difficult to control vote solicitation by political parties at the time of voting.
registration the issue of whether or not to allow online registration, and if so, how
to control the level of fraud.

The possibility of widely distributed locations where votes can be cast changes many
aspects of our carefully controlled elections as we know them. The relevant issues are of
great importance, and could very well influence whether or not such election processes
are desirable. However, in this paper, we focus solely on the security considerations as
they relate to conducting online public elections. In particular, we look at remote online
voting, as opposed to online voter registration, which is a separate, but important and
difficult problem. We also focus solely on public elections, as opposed to private
elections, where the threats are not as great, and the environment can be more controlled.

The importance of security in elections cannot be overstated. The future of our country,
and the free world for that matter, rests on public confidence that the people have the
power to elect their own government. Any process that has the potential to threaten the
integrity of the system, or even the perceived integrity of the system, should be treated
with the utmost caution and suspicion.

2 The voting platform
The type of remote electronic voting that we discuss in this paper involves regular
Internet users with personal computers and standard operating systems and software. For
the sake of the discussion, we focus on Intel machines running Microsoft operating
systems with Microsoft or Netscape browsers, and voters participating from home,
communicating over a TCP/IP network attached to the Internet. While this is a
simplification, it is representative of the vast majority of users under consideration. In
this discussion, we refer to the voting platform simply as a host.

Threats to hosts can be described as a malicious payload and a delivery mechanism (A
malicious payload is software or configuration information designed to do harm.). Both
of these have advanced in sophistication and automation in the past couple of years. The
attacks are more sophisticated in the sense that they can do more damage, are more likely
to succeed, and disguise themselves better than before. They are more automated in that

more and more toolkits have been developed to enable unsophisticated computer users to
launch the attacks.

2.1 Malicious payload
There are literally hundreds of attack programs that we could discuss in this section. One
only need to visit the web site of any number of security software vendors to see the long
lists of exploits that affect hosts to various degrees. The fact of the matter is that on the
platforms currently in the most widespread use, once a malicious payload reaches a host,
there is virtually no limit to the damage it can cause. With today’s hardware and software
architectures, a malicious payload on a voting client can actually change the voter' s vote,
without the voter or anyone else noticing, regardless of the kind of encryption or voter
authentication in place. This is because the malicious code can do its damage before the
encryption and authentication is applied to the data. The malicious module can then erase
itself after doing its damage so that there is no evidence to correct, or even detect the
fraud. To ill ustrate, we focus the discussion on two particular malicious payloads that
each exempli fy the level of vulnerabilit y faced by hosts.

The first program we describe, Backorifice 2000 (BO2K) is packaged and distributed as a
legitimate network administration toolkit. In fact, it is very useful as a tool for enhancing
security. It is freely available, fully open source, extensible, and stealth (defined below).
The package is available at http://www.bo2k.com/. BO2K contains a remote control
server that when installed on a machine, enables a remote administrator (or attacker) to
view and control every aspect of that machine, as though the person were actually sitting
at the console. This is similar in functionality to a commercial product called
PCAnywhere. The main differences are that BO2K is available in full source code form
and it runs in stealth mode.

The open source nature of BO2K means that an attacker can modify the code and
recompile such that the program can evade detection by security defense software (virus
and intrusion detection) that look for known signatures of programs. A signature is a
pattern that identifies a particular known malicious program. The current state of the art
in widely deployed systems for detecting malicious code does not go much beyond
comparing a program against a li st of attack signatures. In fact, most personal computers
in peoples’ houses have no detection software on them. BO2K is said to run in stealth
mode because it was carefully designed to be very diff icult to detect. The program does
not appear in the Task Menu of running processes, and it was designed so that even an
experienced administrator would have a diff icult time discovering that it was on a
computer. The program is diff icult to detect even while it is running.

There can be no expectation that an average Internet user participating in an online
election from home could have any hope of detecting the existence of BO2K on his
computer. At the same time, this program enables an attacker to watch every aspect of the
voting procedure, intercept any action of the user with the potential of modifying it
without the user’s knowledge, and to further install any other program of the attackers
desire, even ones written by the attacker, on the voting user’s machine. The package also
monitors every keystroke typed on the machine and has an option to remotely lock the

keyboard and mouse. It is diff icult, and most likely impossible, to conceive of a web
application (or any other) that could prevent an attacker who installs BO2K on a user’s
machine from being able to view and/or change a user’s vote.

The second malicious payload that is worth mentioning is the CIH virus, also known as
the Chernobyl virus. There are two reasons why we choose this example over the many
other possible ones. The first is that the malicious functionality of this virus is triggered
to activate on a particular day. April 26, 1999 was a disastrous day in Asia, where the
virus had not been that well known, and thousands of computers were affected. This
raises concern because election dates are known far in advance. The second reason for
choosing this example is that the damage that it caused was so severe, that it often
required physically taking the computer to the shop for repair. The code modified the
BIOS of the system in such a way that it could not boot. The BIOS is the part of the
computer that initializes and manages the relationships and data flow between the system
devices, including the hard drive, serial and parallel ports, and the keyboard. A
widespread activation of such a virus on the day of an election, or on a day leading up to
an election could potentially disenfranchise many voters, as their hosts would not be
usable. This threat is increased by the possibilit y that the spread of the virus could be
orchestrated to target a particular demographic group, thus having a direct effect on the
election, and bringing the integrity of the entire process into question.

It does not take a very sophisticated malicious payload to disrupt an election. A simple
attack ill ustrates how easy it is to thwart a web application such as voting. Netscape and
Internet Explorer, the two most common browsers have an option setting that indicates
that all web communication should take place via a proxy. A proxy is a program that is
interposed between the client and the server. It has the abilit y to completely control all
Internet traff ic between the two. Proxies are useful for many Internet applications and for
sites that run certain kinds of f irewalls. The user sets a proxy by making a change in the
preferences menu. The browser then adds a couple of lines to a configuration file. For
example, in Netscape, the existence of the following lines in the file

c:\program_files\netscape\prefs.js

delivers all web content to and from the user’s machine to a program listening on port
1799 on the machine www.badguy.com.

user_pref("network.proxy.http", "www.badguy.com");
user_pref("network.proxy.http_port", 1799);

If an attacker can add these two lines (substituting his hostname for www.badguy.com)
to the preferences file on somebody’s machine, he can control every aspect of the web
experience of that user. There also ways of doing this without leaving a trail that leads
directly to the attacker. While proxies cannot be used to read information in a secure
connection, they can be used to spoof a user into a secure connection with the attacker,
instead of the actual voting server, without the user realizing it. The next section explains
various ways that an attacker could effect changes on a voter’s computer.

2.2 Delivery mechanism
The previous section gave three examples of what an attacker could do to disrupt an
election if the attacker could install code of his choosing on peoples’ computers. This
section deals with how this installation could happen.

The first, and most obvious mechanism is physical installation. Most people do not keep
their computers in a carefully controlled, locked environment. Imagine someone who
develops an application to attack the voting system, such as the two described above,
prepares a floppy disk with the code on it, and then installs it on as many machines as
possible. This could be accomplished by breaking into houses, by accessing machines in
someone’s house when visiting, by installi ng the program on public machines in the
library, etc. The bottom line is that many people can obtain physical access to many other
peoples’ computers at some point leading up to an election. Then, malicious code can be
delivered that can trigger any action at a later date, enable future access (as in the case of
BO2K), or disrupt normal operation at any time. Considering that many of the attack
programs that we are seeing these days run in stealth mode, malicious code could be
installed such that average computer users cannot detect its presence.

While the physical delivery of malicious code is a serious problem, it is nowhere near as
effective as remote automated delivery. By now, most people have heard of the Melissa
virus and the I Love You bug. These are the better-known ones, but many such attacks
happen all the time. In fact, the most widespread of the e-mail viruses, Happy99, has
received very littl e media attention. Typically, these attacks cause temporary disruption
in service, and perform some annoying action. In most of the cases, the attacks spread
wider and faster than their creators ever imagined. One thing that all of these attacks have
in common is that they install some code on the PCs that are infected. There is a
misconception by many people that users must open an attachment in order to activate
them. In fact, one virus called Bubbleboy was triggered as soon as a message was
previewed in the Outlook mailer, requiring no action on the part of the user. Any one of
these e-mail viruses could deliver the attack code described in the previous section.

It is naïve to think that we have seen the worst of the Internet viruses, worms, and bugs.
In the last several months, the incidents of new attacks have grown much faster than our
abilit y to cope with them. This is a trend that is li kely to continue.

E-mail viruses are not the only way that malicious code can be delivered to hosts. The
computers in most peoples’ houses are running operating systems with tens of thousands
of lines of code. These systems are known to be full of operational bugs as well as
security flaws. On top of these platforms, users are typically running many applications
with security problems. These security flaws can be exploited remotely to install
malicious code on them. The most common example of such a flaw is a buffer overflow.
A buffer overflow occurs when a process assigns more data to a memory location than
was expected by the programmer. The consequence is that that attacker can manipulate
the computer’s memory to cause arbitrary malicious code to run. There are ways to check
for and prevent this in a program, and yet buffer overflows are the most common form of
security flaw in deployed systems today.

Perhaps the most likely candidate for delivering a widespread attack against an election is
an ActiveX control, downloaded automatically and unknowingly from a Web server,
which installs a Trojan horse (hidden program) that later interferes with voting. Several
documented attacks against Windows systems operated exactly this way. In fact, any
application that users are lured into downloading can do the same. This includes browser
plug-ins, screen savers, calendars, and any other program that is obtained over the
Internet. Another danger is that the application itself may be clean, but the installer might
install a dynamically linked library (DLL) or other malicious module, or overwrite
operating system modules. The number of ways is legion, and most users are not aware
of the dangers when they add software to their computers. As long as there are people out
there who download and install software over the Internet onto today’s personal
computers running today’s operating systems, it will be easy for attackers to deliver code
that changes their votes, to peoples’ computers.

User’s who open attachments and download software from the network are not the only
ones putting their votes at risk. AOL, for instance, is in a position to control a large
fraction of the total votes, because all of their users run AOL’s proprietary software.
There are dozens of software vendors whose products run on many peoples’ home
machines. For example, there are milli ons of personal computers running Microsoft
off ice, Adobe Acrobat, RealPlayer, WinZip, Solitaire, and the list goes on. These vendors
are in a position to modify any configuration file and install any malicious code on their
customers’ machines, as are the computer manufacturers and the computer vendors. Even
if the company is not interested in subverting an election, all it takes is one rogue
programmer who works for any of these companies. Most of the software packages
require an installation procedure where the system registry is modified, libraries are
installed, and the computer must reboot. During any stage of that process, the installation
program has complete control of all of the software on that machine. In current public
elections, the polli ng site undergoes careful scrutiny. Any change to the process is
audited carefully, and on election day, representatives from all of the major parties are
present to make sure that the integrity of the process is maintained. This is in sharp
contrast to holding an election that allows people to cast their votes from a computer full
of insecure software that is under the direct control of several dozen software and
hardware vendors and run by users who download programs from the Internet, over a
network that is known to be vulnerable to total shutdown at any moment.

3 The communications infrastructure
A network connection consists of two endpoints and the communication between them.
The previous section dealt with one of the endpoints, the user’s host. The other endpoint
is the elections server. While it is in no way trivial, the technology exists to provide
reasonable protection on the servers. This section deals with the communication between
the two endpoints.

Cryptography can be used to protect the communication between the user’s browser and
the elections server. This technology is mature and can be relied upon to ensure the
integrity and confidentiality of the network traff ic. This section does not deal with the

classic security properties of the communications infrastructure; rather, we look at the
availability of the Internet service, as required by remote electronic voting over the
Internet.

Most people are aware of the massive distributed denial of service (DDOS) attack that
brought down many of the main portals on the Internet in February, 2000. While these
attacks brought the vulnerability of the Internet to denial of service attacks to the
mainstream public consciousness, the security community has long been aware of this,
and in fact, this attack was nothing compared to what a dedicated and determined
adversary could do. The February attack consisted of the installation and execution of
publicly available attack scripts. Very little skill was required to launch the attack, and
minimal skill was required to install the attack.

The way DDOS works is that a program called a daemon is installed on many machines.
Any of the delivery mechanisms described above can be used. One other program is
installed somewhere called the master. These programs are placed anywhere on the
Internet, so that there are many, unwitting accomplices to the attack, and the real attacker
cannot be traced. The system lies dormant until the attacker decides that it is time to
strike. At that point, the attacker sends a signal to the master, using a publicly available
tool, indicating a target to attack. The master conveys this information to all of the
daemons, who simultaneously flood the target with more Internet traffic than it can
handle. The effect is that the target machine is completely disabled.

We experimented in the lab with one of the well known DDOS programs called Tribe
Flood Network (TFN), and discovered that the attack is so potent, that even one daemon
attacking a Unix workstation disabled it to the point where it had to be rebooted. The
target computer was so overwhelmed that we could not even move the cursor with the
mouse.

There are tools that can be easily found by anyone with access to the web that automate
the process of installing daemons, masters, and the attack signal. People who attack
systems with such tools are known as script kiddies, and represent a growing number of
people. In an election, the adversary is more likely to be someone at least as
knowledgeable as the writers of the script kiddy tools, and possibly with the resources of
a foreign government.

There are many other ways to target a machine and make it unusable, and it is not too
difficult to target a particular set of users, given domain name information that can easily
be obtained from the online registries such as Register.com and Network Solutions, or
directly from the WHOIS database. The list of examples of attacks goes on and on. A
simple one is the ping of death, in which a packet can be constructed and split into two
fragments. When the target computer assembles the fragments, the result is a message
that is too big for the operating system to handle, and the machine crashes. This has been
demonstrated in the lab and in the wild, and script kiddy tools exist to launch it.

The danger to Internet voting is that it is possible that during an election, communication
on the Internet will stop because attackers cause routers to crash, election servers to get
flooded by DDOS, or a large set of hosts, possibly targeted demographicly, to cease to
function. In some close campaigns, even an untargeted attack that changes the vote by
one percentage point could sway the election.

4 Social engineering
Social Engineering is the term used to describe attacks that involve fooling people into
compromising their security. Talking with election off icials, one discovers that one of the
issues that they grapple with is the inabilit y of many people to follow simple directions. It
is surprising to learn that, for example, when instructed to circle a candidate’s name,
people will often underline it. While computers would seem to offer the opportunity to
provide an interface that is tightly controlled and thus less subject to error, this is counter
to the typical experience most users have with computers. For non-Computer Scientists,
computers are often intimidating and unfamiliar. User interfaces are often poor and create
confusion, rather than simpli fying processes.

A remote voting scheme will have some interface. The actual design of that interface is
not the subject of this paper, but it is clear that there will be some interface. For the
system to be secure, there must be some way for voters to know that they are
communicating with the election server. The infrastructure does exist right now for
computer security specialists, who are suspicious that they could be communicating with
an imposter, to verify that their browser is communicating with a valid election server.
The SSL protocol and server side certificates can be used for this. While this process has
its own risks and pitfalls, even if we assume that it is flawless, it is unreasonable to
assume that average Internet users who want to vote on their computers can be expected
to understand the concept of a server certificate, to verify the authenticity of the
certificate, and to check the active ciphersuites to ensure that strong encryption is used. In
fact, most users would probably not distinguish between a page from an SSL connection
to the legitimate server and a non-SSL page from a malicious server that had the exact
same look as the real page.

There are several ways that an attacker could spoof the legitimate voting site. One way
would be to send an e-mail message to a user telli ng that user to click on a link, which
would then bring up the fake voting site. The adversary could then collect the user’s
credentials and in a sense, steal the vote. An attacker could also set up a connection to the
legitimate server and feed the user a fake web page, and act as a man in the middle,
transferring information between the user and the web server, with all of the traff ic under
the attacker’s control. This is probably enough to change a user’s vote, regardless of how
the application is implemented.

A more serious attack is possible by targeting the Internet’s Domain Name Service
(DNS). The DNS is used to maintain a mapping from IP addresses, which computers use
to reference each other (e.g. 135.207.18.199) to domain names, which people use to
reference computers (e.g. www.research.att.com). The DNS is known to be vulnerable to

attacks, such as cache poisoning, which change the information available to hosts about
the IP addresses of computers. The reason that this is serious is that a DNS cache
poisoning attack, along with many other known attacks against DNS, could be used to
direct a user to the wrong web server when the user types in the name of the election
server in the browser. Thus, a user could follow the instructions for voting, and yet
receive a page that looked exactly li ke what it is supposed to look like, but actually is
entirely controlled by the adversary. Detailed instructions about checking certificate
validity are not likely to be understood nor followed by a substantial number of users.

Another problem along these lines is that any computer under the control of an adversary
can be made to simulate a valid connection to an election server, without actually
connecting to anything. So, for example, a malicious librarian or cyber café operator
could set up public computers that appear to accept votes, but actually do nothing with
the votes. This could even work if the computers were not connected to the Internet,
since no messages need to be sent or received to fool a user into believing that their vote
was cast. Setting up such machines in districts known to vote a certain way could
influence the outcome of an election.

5 Specialized devices
One potential enabler at our disposal is the existence of tamper-resistant devices, such as
smart cards. Cryptographic keys can be generated and stored on these devices, and they
can perform computations, such that proper credentials can be exchanged between a
client and a voting server. However, there are some limitations to the utilit y of such
devices. The first is that there is not a deployed base of smart card readers on peoples’
personal computers. Any system that involves financial investment on the part of
individuals in order to vote is unacceptable. Some people are more limited in their abilit y
to spend, and it is unfair to decrease the likelihood that such people vote. It would, in
effect, be a poll tax. This issue is often referred to as the digital divide.

Even if everybody did have smart card readers on their computers, there are security
concerns. The smart card does not interact directly with the election server. The
communication goes through the computer. Malicious code installed on the computer
could misuse the smart card. At the very least, the code could prevent the vote from
actually being cast, while fooling the user into believing that it was. At worst, it could
change the vote.

Other specialized devices, such as a cell phone with no general-purpose processor,
equipped with a smart card, offer more promise of solving the technical security
problems. However, they introduce even greater digital divide issues. In addition, the user
interface issues, which are fundamental to a fair election, are much more diff icult. This is
due to the more limited displays and input devices. Finally, while computers offer some
hope of improving the accessibilit y of voting for the disabled, specialized devices are
even more limiti ng in that respect.

6 Is there hope?
Given the current state of insecurity of hosts and the vulnerabilit y of the Internet to
manipulation and denial of service attacks, there is no way that a public election of any
significance involving remote electronic voting could be carried out securely. So, is there
any hope that this will change?

For this to happen, the next generation of personal computers that are widely adopted
must have hardware support to enable a trusted path between the user and the election
server. There must be no way for malicious code to be able to interfere with the normal
operation of applications. Efforts such as the Trusted Computing Platform Alli ance
(TCPA) (see http://www.trustedpc.org/home/home.htm) must be endorsed. The challenge
is great because to enable secure remote electronic voting, the vast majority of computer
systems need to have the kind of high assurance aspired to by the TCPA. It is not clear
whether or not the majority of PC manufacturers will buy into the concept. The market
will decide. While it is unlikely that remote electronic voting will be the driving force for
the design of future personal computers, the potential for eliminating the hazards of
online electronic commerce could potentially fill t hat role.

One reason that remote electronic voting presents such a security challenge is that any
successful attack would be very high profile, a factor that motivates much of the hacking
activity to date. Even scarier is that the most serious attacks would come from someone
motivated by the abilit y to change the outcome without anyone noticing. The adversaries
to an election system are not teenagers in garages but foreign governments and powerful
interests at home and abroad. Never before have the stakes been so high.

7 Conclusions
A certain amount of fraud exists in the current off line election system. It is tolerated
because there is no alternative. The system is localized so that it is very unlikely that a
successful fraud could propagate beyond a particular district. Public perception is that the
system works, although there may be a few kinks in it here and there. There is no doubt
that the introduction of something like remote electronic voting will , and should, come
under careful scrutiny, and in fact, the system may be held up to a higher standard. Given
the current state of widely deployed computers in peoples’ homes, the vulnerabilit y of the
Internet to denial of service attacks, and the unreliabilit y of the Domain Name Service,
we believe that the technology does not yet exist to enable remote electronic voting in
public elections.

Acknowledgements
We thank all of the participants of the Internet Policy Institute e-voting workshop for a
wonderful exchange of ideas. Special thanks go to Lorrie Cranor, Andrew Hume, and
David Jefferson for valuable input.

